Sabtu, 30 Juni 2012

BIODEGRADASI HIDROKARBON


Secara umum biodegradasi atau penguraian bahan (senyawa) organik oleh mikroorganisme dapat terjadi bila terjadi transformasi struktur sehingga terjadi perubahan integritas malekuler. Proses ini berupa rangkaian reaksi kimia enzimatik atau biokimia yang mutlak memerlukan kondisi lingkungan yang sesuai dengan pertumbuhan dan perkembangbiakan mikroorganisme (Shechan dalam Nugroho, 2006).
Senyawa hidrokarbon dalam minyak bumi merupakan sumber karbon bagi pertumbuhan mikroorganisme, sehingga senyawa tersebut dapat didegradasi dengan baik (Nugroho, 2006).
Di dalam minyak bumi terdapat dua macam komponen yang dibagi berdasarkan kemampuan mikroorganisme menguraikannya, yaitu komponen minyak bumi yang mudah diuraikan oleh mikroorganisme dan komponen yang sulit didegradasi oleh mikroorganisme (Hadi, 2003).
Komponen minyak bumi yang mudah didegradasi oleh bakteri merupakan komponen terbesar dalam minyak bumi atau mendominasi, yaitu alkana yang bersifat lebih mudah larut dalam air dan terdifusi ke dalam membran sel bakteri. Jumlah bakteri yang mendegradasi komponen ini relatif banyak karena substratnya yang melimpah di dalam minyak bumi. Isolat bakteri pendegradasi komponen minyak bumi ini biasanya merupakan pengoksidasi alkana normal (Hadi, 2003).
Komponen minyak bumi yang sulit didegradasi merupakan komponen yang jumlahnya lebih kecil dibanding komponen yang mudah didegradasi. Hal ini menyebabkan bekteri pendegradasi komponen ini berjumlah lebih sedikit dan tumbuh lebih lambat karena kalah bersaing dengan pendegradasi alkana yang memiliki substrat lebih banyak. Isolasi bakteri ini biasanya memanfaatkan komponen minyak bumi yang masih ada setelah pertumbuhan lengkap bakteri pendegradasi komponen minyak bumi yang mudah didegradasi (Hadi, 2003).

Jenis Hidrokarbon yang Didegradasi Mikroba

1. Hidrokarbon Alifatik
Mikroorganisme pedegradasi hidrokarbon rantai lurus dalam minyak bumi ini jumlahnya relatif kecil dibanding mikroba pendegradasi hidrokarbon aromatik. Di antaranya adalah Nocardia, Pseudomonas, Mycobacterium, khamir tertentu, dan jamur. Mikroorganisme ini menggunakan hidrokarbon tersebut untuk pertumbuhannya. Penggunaan hidrokarbon alifatik jenuh merupakan proses aerobik (menggunakan oksigen). Tanpa adanya O2, hidrokarbon ini tidak didegradasi oleh mikroba (sebagai pengecualian adalah bakteri pereduksi sulfat).
Langkah pendegradasian hidrokarbon alifatik jenuh oleh mikroorganisme meliputi oksidasi molekuler (O2) sebagai sumber reaktan dan penggabungan satu atom oksigen ke dalam hidrokarbon teroksidasi.

2. Hidrokarbon Aromatik
Banyak senyawa ini digunakan sebagai donor elektron secara aerobik oleh mikroorganisme seperti bakteri dari genus Pseudomonas. Metabolisme senyawa ini oleh bakteri diawali dengan pembentukan Protocatechuate atau catechol atau senyawa yang secara struktur berhubungan dengan senyawa ini. Kedua senyawa ini selanjutnya didegradasi menjadi senyawa yang dapat masuk ke dalam siklus Krebs (siklus asam sitrat), yaitu suksinat, asetil KoA, dan piruvat. Gambar 2 menunjukkan reaksi perubahan senyawa benzena menjadi catechol.

 Baca selengkapnya di :

Jumat, 29 Juni 2012

NITRIL


Nitril adalah senyawa kimia yang mengandung gugus siano (C=N), dengan atom karbon terikat-tiga pada atom nitrogen. Kelompok CN dapat ditemukan dalam banyak senyawa. Beberapa senyawa diantaranya berupa gas dan lainnya berupa zat padat atau cair. Gugus siano terdapat juga dalam bentuk garam dan polimer dan juga ada yang bersifat kovalen, molekuler, dan ionik (Hart, Craine,Hart 2003). Ikatan rangkap tiga karbon-nitrogen dari sianida organik (nitril) dapat dihidrolisis menjadi gugus karboksil. Reaksi ini berlangsung dalam keadaan asam maupun basa. Bila dalam suasana asam atom nitrogen dari sianida dikonversi menjadi ion ammonium (Gambar 1), sedangkan  dalam suasana basa, nitrogen dikonversi menjadi amonia dan produk organik, yaitu garam karboksilat, yang perlu dinetralkan dalam langkah terpisah menjadi asam (Gambar 2) (Hart, Craine, Hart 2003).

R-C=N + 2H2O          HCl                             R-COOH + NH4+ + Cl-
Gambar 1  Sintesis sianida dalam suasana asam.

R-C=N + 2H2O                  NaOH                R-COONa     +   NH3
Gambar 2  Sintesis sianida dalam suasana basa.

Nitril merupakan kelompok senyawa yang toksik karena mengandung gugus CN dalam strukturnya. Meskipun senyawa nitil dikenal sebagai senyawa sangat toksik, namun diproduksi dalam jumlah besar dan digunakan sebafgai pelarut, plastik, karet sintetik, herbisida, obat-obatan. Krotononitril dan akrilonitril misalnya banyak digunakan sebagai spesifik reagen untuk alkilasi protein kelompok sulfihidril (Cavins dan Friedman,1968). Demikian juga benzonitril banyak digunakan sebagai salah satu bahan aktif herbisida. Herbisida yang diketahui mengandung nitril misalnya dichlobenil, ioksinil, dan buktril dapat menimbulkan dampak negatif bagi kesehatan dan lingkungan.




Selasa, 12 Juni 2012

POLIESTER 2 ( TUGAS KELOMPOK)


Serat poliester pertama kali diperkenalkan pada tahun 1953, poliester merupakan polimer yang diperoleh dari reaksi senyawa asam dan alkohol. Calico Printers Association dari Inggris menyempurnakan penelitian Dr. Carothers dari Du Pont dan memperoleh paten untuk seluruh bagian dunia kecuali Amerika Serikat yang khusus ditangani oleh Du Pont.

             Serat poliester cepat sekali memperoleh perhatian konsumen oleh karena sifat mudah penanganannya (easy care), bersifat dicuci langsung dipakai (wash and wear), tahan kusut dan awet. Sifat pakaiannya lebih sempurna apabila dicampur dengan serat wol atau kapas. Serat poliester menunjukan jenis serat yang paling cepat dalam perkembangannya. Apabila dilihat dengan miskroskop nampak serat poliester hampir serupa dengan serat nylon, yakni memanjang seperti silinder dan penampang lintangnya bulat seperti pada umumnya serat sintetik yang dibuat dengan pemintalan leleh. Tetapi serat poliester tidak tembus cahaya atau transparan seperti halnya serat Nylon. Kekuatan dan ketahanan terhadap gosokan serat poliester tinggi, tetapi sifat kembali dari mulur (tensile recovery) pada peregangan tidak sebaik serat Nylon.


Serat poliester merupakan suatu polimer yang mengandung gugus ester dan memiliki keteraturan struktur rantai yang menyebabkan rantai-rantai mampu saling berdekatan, sehingga gaya antar rantai polimer poliester dapat bekerja membentuk struktur yang teratur. Poliester merupakan serat sintetik yang bersifat hidrofob karena terjadi ikatan hidrogen antara gugus – OH dan gugus – COOH  dalam molekul tersebut, oleh karena itu serat poliester sulit didekati air atau zat warna. Serat ini dibuat dari asam tereftalat dan etilena glikol.

Disamping sifat hidrofob,faktor lain yang menyulitkan pencelupan ialah kerapatan serat poliester yang tinggi sekali sehingga sulit untuk dimasuki oleh molekul zat warna.
Derajat kerapatan ini akan berkurang dengan adanya kenaikan suhu karena fibrasinya bertambah dan akibatnya ruang antar molekul makin besar pula. Molekul zat warna akan masuk dalam ruang antar molekul.

Sifat Fisika Poliester

      1.  Elektrostatik
       Serat poliester sangat menimbulkan elektrostatik selama proses. Selain itu kain poliester bila bersentuhan dengan kulit akan menyebabkan timbulnya listrik statis. Oleh karena itu perlu ditambahkan sifat anti statik pada serat poliester.
      2.  Berat jenis
            Serat poliester memiliki berat jenis 1,38 g/cm3.
      3.  Morfologi
           Serat poliester berbentuk silinder dengan penampang melintang bulat, atau sesuai dengan bentuk spineret yang digunakan pada saat pembuatanya.
      4.  Kandungan air
         Serat sintetik pada umumnya memiliki kandungan air yang rendah yaitu antara 0-3 % .Serat poliester sendiri memiliki kandungan air 0,4 %
      5.  Derajat kristalinitas
     Derajat kristalinitas adalah faktor penting untuk serat poliester,karena derajat kristalinitas serat sangat berpengaruh pada daya serap zat warna, mulur, kekeuatan tarik, stabilitas dimensi, serta sifat-sifat lainya.
      6.  Pengaruh panas
        Serat poliester tahan terhadap panas sampai pada suhu 220 0C, diatas suhu ini akan memepengaruhi kekuatan, mulur, dan warnanya menjadi kekuningan. Suhu 230-240 C menyebabkan poliester melunak, suhu 2600 C menyebabkan poliester meleleh.
     7.  Sifat Elastis
          Poliester memiliki sifat elastisitas yang baik dan ketahanan kusut yang baik.

Sifat Kimia Poliester
Poliester tahan asam lemah meskipun pada suhu mendidih, dan tahan asam kuat dingin. Poliester tahan basa lemah tapi kurang tahan basa kuat. Poliester tahan zat oksidator, alkohol, keton, sabun, dan zat-zat untuk pencucian kering. Poliester larut dalam metakresol panas, asam trifouro asetat-orto-cloro fenol.



Kamis, 07 Juni 2012

SINTESIS AMIDA


        Senyawa amida dapat disintesis dengan beberapa cara yaitu dengan dehidrasi garam ammonium, dimana asam karboksilat dicampur dengan amina akan diperoleh garam ammonium yang kemudian didehidrasi membentuk senyawa amida. Menurut Fessenden, R.J. dan Fessenden, J.S. (1986) amida dapat disintesis dengan mereaksikan antara ester dengan amoniak cair dan menghasilkan hasil samping etanol. Amida juga dapat disintesis dengan turunan asam karboksilat lainnya seperti anhidrida asam halida asam dengan amoniak cair.
         Senyawa amida memiliki kegunaan yang luas dalam kehidupan antara lain dapat berguna dalam pembuatan obat-obatan seperti sulfoamida yang digunakan untuk melawan infeksi dalam tubuh manusia, sebagai zat antara dalam pembuatan amina, sebagai bahan awal dalam pembuatan suatu polimer seperti palmitamida yang digunakan sebagai bahan penyerasi pada penguatan karet alam dengan silika.
      Sintesis senyawa amida telah banyak dilakukan oleh peneliti sebelumnya,  diantaranya adalah Sintesis senyawa amida dari trigliserida telah dilakukan oleh Farizal (2004), dimana senyawa amida dibuat dengan mereaksikan antara trigliserida  dengan amoniak berlebih dengan berbagai variasi waktu dan suhu tetapi tanpa menggunakan katalis. Hal yang sama juga telah dilakukan oleh Makmun, S.W (2004) 
yang mensintesis senyawa fatty amida dari minyak kelapa sawit dengan metode yang sama yaitu dengan mereaksikan metil oleat dengan amoniak berlebih  tetapi tanpa penggunaan pelarut dan katalis, dimana mengalami kesulitan karena konsentrasi lemak yang tinggi sehingga reaksinya dengan amoniak kemungkinan akan membutuhkan energi yang sangat besar. Manihuruk (2009) juga telah berhasil mensintesis asam azelat dengan amoniak bertekanan menggunakan katalis nikel pada suhu 1800senyawa ini mempunyai 2 gugus karboksil, reaksi asam azelat dengan ammoniak tersebut menghasilkan senyawa Nonana-1,9-diamida sebanyak 70,2%. Sintesis dekanamida dari asam dekanoat juga telah dilakukan oleh manihuruk (2008) yaitu dengan mereaksikan asam dekanoat (C10H21COOH) dengan amoniak bertekanan menggunakan katalis nikel berlangsung pada suhu 1500C (Hutauruk,2008).
          Karena itu, dalam penelitian ini senyawa amida disintesis dari asam palmitat, suatu asam rantai panjang (C15H31COOH), dengan mereaksikan asam palmitat   dengan gas amoniak menggunakan katalis Nikel dilakukan selama 10 jam pada suhu 1800C sehingga diharapkan ikatan N-H dapat dipecah dengan energi yang lebih rendah dan memudahkan berjalannya reaksi amidasi.